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316 R.J. BAXTER

Any planar set of intersecting straight lines forms a four-coordinated graph, or
‘lattice’, provided no three lines intersect at a point. For any such lattice an eight-
vertex model can be constructed. Provided the interactions satisfy certain constraints
(which are in general temperature-dependent), the model can be solved exactly in the
thermodynamic limit, its local properties at a particular site being those of a related
square lattice.

A particular case is a solvable model on the Kagomé lattice. It is shown that this
model includes as special cases many of the models in statistical mechanics that have
been solved exactly, notably the square, triangular and honeycomb Ising models, and
the square eight-vertex model.

Some remarkable equivalences between correlations on different lattices are also

established.

1. INTRODUGTION

There are a number of two-dimensional statistical mechanical models of interacting systems for
which the free energy has been evaluated exactly in the thermodynamic limit. In particular, the
following models have been solved in the absence of magnetic or electric fields:

(1) the translation-invariant Ising model on the square lattice (Onsager 1944);

(ii) the translation-invariant Ising model on the triangular or honeycomb lattice (Houtappel
1950; Husimi & Syozi 1950; Wannier 1950; Stephenson 1964);

(iii) the ice-type ferroelectric models on the square lattice (Lieb 1967; Sutherland 1967);

(iv) the eight-vertex model on the square lattice (Baxter 1972);

(v) the three-spin model on the triangular lattice (Wood & Griffiths 1972; Baxter & Wu
1974);

(vi) an ice-type model on the triangular lattice satisfying certain temperature-dependent
restrictions (Baxter 1969; Kelland 1974); this has recently been shown to be equivalent to a
restricted ice-type model on the Kagomé lattice (Baxter, Temperley & Ashley 1977). Both (iii)
and (vi) are also equivalent to Potts models at their transition temperatures, on the square and
triangular lattices, respectively (see also Baxter, Kelland & Wu 1976).

From a mathematical point of view, all these models have two common features. One is that
their solution leads sooner or later to the introduction of elliptic functions. (In the ice-type
models these functions occur in the distribution of the wavenumbers £, ..., &, (Baxter 1971,
appendix)). The other common feature is that they can all be solved by some appropriately
generalized Bethe ansatz (see for example, Baxter 1973).

This suggests that there may be some more general model which includes all of (i) to (vi) as
special cases. Considerable progress has already been made in this direction, for by construction
(iv) contains (i) and (iii) as special cases, and has also been shown to include (v) (Baxter &
Enting 1976). However, it does not include (ii) or (vi).

In this paper a general model including (i)—(vi) is presented. If some reasonable assumptions
are made concerning the thermodynamic limit, then the properties of the model can be obtained
directly from the known or conjectured results for (iv).

It should be noted that there are very few exactly solved two-dimensional models that are not
included in the list (i) to (vi). The only ones that come to mind are the spherical model, non-
translation-invariant Ising models, ice-type models in the presence of direct electric fields, and
colouring problems on the honeycomb and square lattices (Baxter 19704, ). There are basic
mathematical differences between the solutions of the first three and those of models (i) to (vi), so
in this sense they are ‘exceptional’ models.
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SOLVABLE EIGHT-VERTEX MODEL 317

The two solved colouring problems share the same common mathematical features as (i) to
(vi) and should probably be listed with them. However, they are defined very differently and it is
not yet obvious that they are equivalent to any special case of the general model discussed in this

paper.

2. THE GENERAL MODEL

A model that includes (i) to (vi) can be constructed on the Kagomé lattice, as is shown in §8.
However, it is actually simpler and more illuminating to consider a yet more general model,
namely a restricted eight-vertex model on an arbitrary lattice of intersecting straight lines.

Consider some simply connected convex planar region, such as the interior of a circle, and
draw N straight lines within it, starting and ending at the boundary. No three lines are allowed to
intersect at a common point.

Two typical sets of such lines are shown in figure 1. The intersections of these lines from the
sites of a graph, or ‘lattice’ . The line segments between sites form the edges of Z. Each site is
the endpoint of four edges.

R

Ficure 1. Typical irregular straight-line graphs, or ‘lattices’ .%’. The second differs from the first only in that the
line PQ has been shifted upwards. The broken lines in the first figure are a possible base line, with the lattice
lines extended to cross it.

Consider two intersecting lines, such as PQ and RS in figure 1. Let A be their point of inter-
section. To the site A assign an interaction coefficient KJ, to the angle PAR a coefficient Kp, g,
and to the angle RAQ another coefficient Ky, . Make no distinction between opposite angles at
an intersection, or between the senses of an angle, so that for example Ky, g, Kpap, Kgass Ksag
are all identical.

Do this for every intersecting pair of lines. Thus if all lines intersect there will be FN(N—1)
interaction coefficients associated with sites, and N(N — 1) coefficients associated with angles.

We now construct an eight-vertex model on ., with K, Ky, , g, etc. as interaction coefficients.
To do this we first label the faces of £ in some way, and with each face [ we associate a spin o,
Each such spin has values +1 or — 1.

Define an Hamiltonian J# by

— A = E[Kppr 010, + Kpaq Om oy + Kj 010,05, 0,], (2.1)

where the summation is over all sites A of £, and for each term in the summation /, m, n, p are the
four faces surrounding the site, arranged as in figure 2 so that / and z are opposite, the angle PAR
is a corner of either face [ or face #, RAQ is a corner of either face m or face p.

25-2
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318 R.J. BAXTER
The object of statistical mechanics is to calculate the partition function
Z =Y e " (2.2)
o
(the o-summation being over all values of all spins in the lattice) and various thermodynamic
averages, such as the two-spin correlation

<Ul Um> =277 2 01 0m e Fr, (23)

Ficure 2. A typical site A of &, showing the surrounding faces I, m, n, p, ordered as in equation (2.1).

Asisindicated in figure 1 the faces of & can be grouped into two classes X and Y (shaded and
unshaded) so that no two faces of the same class have an edge in common. (An equivalent state-
ment is that the dual lattice of % is bipartite.) The two-spin interactions in (2.1) link only faces
of the same class, so (2.1) is the sum of three terms:

(a) a nearest-neighbour two-spin Ising Hamiltonian defined on the class X faces,

(b) a similar Hamiltonian defined on the class Y faces,

(¢) a purely four-spin Hamiltonian coupling the X and Y spins, with coefficients K.

In particular, if the K are all zero, then the model reduces to two independent ordinary Ising
models, one on the X spins, the other on the Y spins.

It follows that (2.1) is a fairly obvious generalization to a rather arbitrary planar lattice of the
eight-vertex model, which was originally defined on the square lattice (Fan & Wu 1970).

It would be marvellous to calculate Z for any choice of the lattice coeflicients K5, Kp g, etc.,
but the author knows of no way to do this. What can be done is to calculate Z (in the thermo-
dynamic limit when N becomes infinite) if the parameters satisfy the conditions given in § 4.

3. FORMULATION AS AN EIGHT-VERTEX MODEL

In this paper the above Ising-type formulation will mostly be used. However, to connect with
previous results it is sometimes desirable to regard (2.2) as the partition function of a ferroelectric-
type model.

This can be done by using an argument due to Wu (1971) and Kadanoff & Wegner (1971).
Every edge of & lies between a shaded (class X) and an unshaded (class Y) face. If the spins on
the two faces are alike, draw an arrow on the edge so that an observer following the arrow has the
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SOLVABLE EIGHT-VERTEX MODEL 319

shaded face on his left. If the spins are different, draw the arrow so that the observer has the
shaded face on his right.

Now consider a site j of the lattice . There are 16 possible choices of the four surrounding
spins. To each choice there corresponds a configuration of arrows on the four edges. Each arrow
configuration corresponds to two spin configurations, one being obtained from the other by
reversing all spins. Thus there are eight arrow configurations, as shown in figure 3. In each arrow
configuration there are an even number of arrows pointing into the site (or vertex). We call this the
eight-vertex condition. An arrow covering of the edges of & is ‘allowed’ if the eight-vertex condition
is satisfied at every site.

1 2 3 4 5 6 7 8

T1icure 3. The eight arrow configurations allowed at a site. Corresponding spin configurations are also shown.
The other eight spin configurations can be obtained by reversing all four spins.

To every configuration of spins on the faces of . there corresponds an allowed arrow covering
of the edges. To every allowed arrow covering there correspond two spin configurations, one being
obtained from the other by reversing all spins. Since the Hamiltonian (2.1) is unchanged by
reversing all spins, it follows from (2.2) that for a lattice of M sites

Z=2%‘,w1w2...wM, (3.1)

where the sum is over all allowed arrow configurations C and w, is the Boltzmann weight of site j
for configuration C.
Consider the site A, or j, shown in figure 2, and for brevity set
K] = KRAQ’ K; = KPAR’ K; = KZ. (3.2)
Then the Boltzmann weight o, is given by
w; = exp (K; 0,0, +Kjoy,0,+ K] 0y0,,0,0,). (3.3)
From figure 3 it follows that
w; = a;(b;, ¢;, d;) if the arrows at site j are in configuration 1 or 2 (3 or 4, 50r 6, 7or 8), (3.4)
4y = exp (K, ~ K}~ K}), exp(~K;+Kj—~K}),
exp (K;+ K;+ Kj), exp(—K;—K;+Kj). (3.5)

where a;, bj,¢;

In figure 3 the top-right and bottom-left faces have been regarded as shaded, but reversing the
shading merely reverses the arrows, which leaves the weights unchanged. Thus w; is always
given by the above rule (3.4).
Duality
From (3.5), the site weights satisfy the normalization condition a; b;¢;d; = 1. For some pur-

poses it is convenient to ignore this requirement and regard a;, b;, ¢;, d; as independent variables.

42
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320 R.J.BAXTER

(This is equivalent to re-defining the energy zero of the Hamiltonian (2.1).) Then Z is given by
(3.1) and (3.4) and is a linear function of a,, ay, ..., dy,. Using the same weak-graph symmetry
argument as that employed by Fan & Wu (1970), and Wegner (1973), for the square lattice, one
can establish for the general lattice Z that

({a* b* cj, ) Z<{“], 35 Cjs })) (36)

where af = 3(a;=b;+¢—d),
bf = $(—a;+b;+¢—dy), (3.7)
c;.k = %(da‘l‘b]‘l“(/‘j‘i'd])) '
dff = 5(—a;—bj+c;+dy)

Ficure 4. The triangles ABC in figures 14 and b, showing the positions of the interior spin oy and the surrounding
spins oy, ..., 0.

4., STAR-TRIANGLE CONDITIONS

Consider the two lattices shown in figure 1. They differ only in that the line PQ has been shifted
from one side of site C to the other. This changes the triangle ABC, butleaves the rest of the lattice
unaltered. In both lattices A is the intersection of the lines PQ and RS. Similarly B is the inter-
section of PQ and TU, C is the intersection of RS and TU.

Construct eight-vertex models as above on both lattices, using the same boundary conditions
(e.g. all boundary spins up) and the same coefficients K, Kp,p, etc.

For each model, let o, ..., o be the six spins on the faces surrounding the triangle ABC, and
o, the spin inside the triangle, as indicated in figure 4. For brevity set

K1 = KSAQ’ Kz = KPBT’ K:; = KUCR>
Ki = KRAQ: Ké = KQBT> K:; = KTCR’ (4-1)
K;=K;, Kj=Kj  Ky=K;

Thus K,, K,, K; are the coefficients of the interior angles of the triangle ABC, while Ki, K3, K; are
the coefficients of the exterior angles.

The summand in (2.2) is the same for both models, except the factors coming from the inter-
actions round sites A, B, C. The centre spin o, occurs in only these factors, so the summation over
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SOLVABLE EIGHT-VERTEX MODEL 321

o, may in each case be performed to give a total Boltzmann weight for the triangle ABC. Doing
this, the weight for the first model is
W, =2exp (Kiogoy+Ky050,+ K50,0%)
x cosh (K; 01+ Kyo3+ Ky05+ Kioy 0603+ Kyoyo0y0,+ Ky 050404).  (4.2a)
while the weight for the second model is
W, = 2exp (Kjo305+ Kjo50,+ K50, 03)
x cosh(K, o4+ Kyo4+ Kyoy+ Kyjoy0305+ Kyog0,00+ Ks0p0,03).  (4.20)

Both weights are functions of oy, ..., 0. The other factors in the summand of (2.2) are identical,
for all values of oy, ..., o, so the two partition functions will be the same if

W, =W, (4.3)

forall oy, ..., 0. Further, averages such as (2.3) will also be the same, provided neither spin ¢, nor
spin o, lies inside the triangle ABC.

Since oy, ..., 04 each have two values, (4.3) represents 64 equations. However, (4.3) is un-
changed by negating all of o, o3, 075, or all of oy, 4, 07, 50 the 64 equations reduce to 16. Further,
(4.3) is unaltered by interchanging o, with o, o3 with o, and o with o,. This means that there
are only six distinct equations, namely

cosh (K, + Ky + Ky + K{ — K — Ky,)

€Xp (2K3+2Kk) = cosh ( —K,L—{-K]-I-Kk'—K,g +K;/+K;é) (4.4)
xp (20— 2K — O (Kum Ky + K= K+ K] 4 Ki) s

" cosh (K;+K;— K;,— K{ + K] + K},)

where (i, j, k) is any permutation of (1, 2, 3). There are three distinct equations of the form (4.4),
three of form (4.5).

(Itis tempting to try to generalize the present work by allowing K, ..., Kj to be different for the
two lattices, but the interchange symmetry of (4.3) is then destroyed, leaving 16 apparently
distinct equations. Thus one gains nine more degrees of freedom, but ten more apparent restric-
tions, and it appears that no such generalization is possible.)

The equations (4.4) and (4.5) have been reported before: they are equivalent to the commuta-
tion conditions for the square lattice eight-vertex model (Baxter 1972, eqn B8), and a special
case has been discussed for the six-vertex models (Baxter, Temperley & Ashley 1977, eqn 111).

The six equations (4.4) and (4.5) are not independent. The Kj, K3, K3 can all be eliminated by
taking ratios and products, giving three apparently distinct equations which can be regarded as
defining K7, K3, K; as functions of K;, K,, K;. However, these three equations are identically
satisfied if K} = K = Kj, so cannot be independent.

It appears that there is in general no other solution of these three equations, so a corollary of
(4.4) and (4.5) is, taking K” to be the common value,

K, =K;=Kj=K" (4.6)

If K” = 0, then the equations (4.4) become the star-triangle relation between an Ising model
on the honeycomb lattice, with interactions K;, K,, K3, and an equivalent Ising model on the
triangular lattice with interactions Kj, K, K3 (Houtappel 1950, eqn 23). This follows directly
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322 R.J. BAXTER

from their derivation, since if K" = 0 the weights ¥ and I}, each factor into a function of o}, o5, o5
and a function of o7y, 07y, 07, and (4.3) factors into two independent star-triangle transformations
with identical coefficients. Thus for K” # 0 (4.8) can be regarded as a generalized star-triangle
transformation.

By using (4.6), the equations (4.5) can be obtained from (4.4) by taking ratios. Thus (4.4) and
(4.6) ensure that (4.3) is satisfied, i.e. Z is unchanged by shifting the line PQ across the site C.
Remembering that Kj, ..., K5 are defined by (4.1) and figure 4, we call equations (4.4) and (4.6)
the star-triangle relations for the triangle ABC. Remember that in these equations K, K,, K are the
interaction coefficients assigned to the inside angles of the triangle ABC, while Kj, Kj, K are
assigned to the corresponding supplementary exterior angles.

Corollaries
Various corollaries of (4.4) and (4.6) can be obtained by eliminating two of the angle coeffi-
cients Ky, ..., K. In particular, eliminating K; between equations (4.4) and (4.5) as written,
using (4.6), gives A; = Ay, (4.7)
where A; = —sinh 2K, sinh 2K} — tanh 2K” cosh 2K, cosh 2K. (4.8)
Since 4, is a symmetric function of the angle coefficients K;, K; of a single site, it can be thought of
asa ‘site parameter’ similar to Kj. Since 4, corresponds to the site A in figure 4,itcan alternatively

be written as 4 4. Similarly, 4, and 44 can be written as Ag and 4, respectively. From (4.7), they
have a common valuve 4. By using (4.1), it follows that (4.6) and (4.7) can be written as

K =Kjy=Ky=K", Ay=Ay=A¢=A. (4.9)

In the limit when K, Kj, — K" all tend to plus infinity, their differences remaining constant,
the eight-vertex model reduces to an ‘ice-type’ six-vertex model. The 4 defined above is then the
same as that used by Lieb (1967).

Also, eliminating Kj and Kj gives the equations

— cosh 2K, cosh 2K + coth 2K sinh 2K, sinh 2K
= cosh 2K, cosh 2K" + coth 2Kj sinh 2K, sinh 2K". (4.10)

Two similar equations can be obtained by permuting the suffixes 1, 2, 3.

Quadrilateral theorem

Consider the quadrilateral shown in figure 5. Let K, Ky, etc. be the interaction coefficients
assigned to the six sites and twelve angles. Suppose that these satisfy the star-triangle relations
(4.4) and (4.6) for each of the triangles AEF, BFD, CDE. Then it follows that they also satisfy
the star-triangle relations for the triangle ABC.

A brute-force proof of this theorem is given in appendix A, by using only elementary algebra.
A much neater proofis given in § 6, but this makes use of elliptic functions. From the form of the
equations (4.8) and (4.10), it seems likely that a third proof, of intermediate difficulty, could be
obtained by using hyperbolic trigonometry (Onsager 1944, p. 135; Coxeter 1947, p. 238).

Note in particular that if the star-triangle relations are satisfied for AEF, BFD and CDE, then

Kj = K = K& = Ki = Ki = K;
AA::AB:AC:AD:AE:AF) (4.11)

i.e. the site parameters K", 4 are the same for each site.
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SOLVABLE EIGHT-VERTEX MODEL 323

Conditions _for model to be solvable

Consider a connected lattice % and extend the lines until they each cross some base line, as
indicated by the broken lines in figure 14. Assign site and angle coefficients to the sites and angles
on the base line.

Every site A of & is then a vertex of a triangle consisting of the two lines through A and the
base line, such as AGY in figure 1. Call this the basic triangle with vertex A. In the next section
we shall show that the eight-vertex model on % is exactly solvable (in the thermodynamic limit)
provided the site and angle coefficients on the base line can be chosen to that the star-triangle
conditions are satisfied for every basic triangle. If this can be done we say that the model is Z-
invariant.

Q

F1cure 5. The quadrilateral ABCDEF. The lower-case letters denote the angle weights used in appendix A, e.g.
w = exp (1Kgzgp).

From (4.9), this implies that K" must have the same value for all sites of % and all sites on the
base line. So must 4. Also, any triangle in % (not necessarily a face of %) is part of a quadri-
lateral, with fourth side the base line. The other three triangles in this quadrilateral are basic, so
from the quadrilateral theorem the star-triangle conditions must be satisfied for every triangle in £ .
For example, they must be satisfied for the triangles ADE in figure 14 and &.

It follows that equation (4.3) is satisfied whenever a line of % is shifted across a vertex. Hence Z
is unchanged by shifting the lines, so long as their order at the boundary is preserved. The corre-
lation {0, 0,,) is also unchanged, provided no line is shifted across face [ or face m.

Such models certainly exist. They can be constructed by choosing a set of site and angle coeffi-
cients for the base line, such that K” and 4 have the same value at each such site. Asis explicity
shown in equation (A 3)-(A 7) of appendix A, the star-triangle conditions then determine the
coefficients at the third vertex of every basic triangle, i.e. at every site of 2.

Since K” and 4 are fixed, there is only one degree of freedom in choosing the angle coefficients
of a site formed by the intersection of a lattice line with the base line. Ift here are N lattice lines,
it follows that there are N+ 2 disposable parameters in the model, namely K”, 4 and N ‘line
parameters’.

Extended lattices

A lattice & can be extended either by moving the convex boundary outwards and extending

the lattice lines to the new boundary, or by adding new lines, or both. If the model on % is Z-

26 Vol. 289. A.
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324 R.J. BAXTER

invariant, then the coefficients of the new sites and angles can be chosen so that the model on the
extended lattice £ is also Z-invariant.

To see this, first consider a new site formed by extending two lines of % until they intersect.
This new site is a vertex of a basic triangle, so its coeflicients can be obtained from those of the sites
on the base line by the star-triangle relations, and the Z-invariance condition remains satisfied.

If a new line is added, select an intersection A of this with a previous line. Assign site and angle
coefficients to A such that K”, 4 have the same values as on the previous sites of 2.

Extend the new line to cross the base line at a point P. Let Q be the intersection of the old line
through A with the base line. From figure 6 it is apparent that PQA is a basic triangle. The
coeflicients at P can be obtained from the star-triangle relations for PQA.

v

T1cURE 6. Assignment of coeflicients to a new line ABP in .%: PRQ is the base line, AQ and BR are already
existing lines. The coefficients at Q , R are given. If those of A are also given, then those at P, B are deter-
mined by the star-triangle relations for PQ A, PRB.

Every other site B on the new line is a vertex of a basic triangle, for example BPR in figure 6.
The coeflicients at B can therefore be obtained from the star-triangle relations for BPR, thereby
maintaining Z-invariance.

Note that if such a line crosses all previous lines of .Z, it can be regarded as an alternative base
line. From the quadrilateral theorem, the star-triangle conditions are satisfied for all triangles, in
particular for those with the new line as a side. Hence if a lattice model is Z-invariant with respect
to one base line, it is also Z-invariant with respect to any other.

5. LOCAL THERMODYNAMIC PROPERTIES

Consider a site A near the centre of &. Let PAQ ,RAS be the two lines through A, asin figure 1.
Let [, m, n, p be the four faces round A, as in figure 2.

Extend % as follows: draw 2 lines parallel to PAQ , M of them being close together on one
side of &, the other M being close together on the other side. Similarly, draw 2/ lines parallel to
RAS.

This creates a parallelogram ‘frame’ for ., each side being made up of M lines close together.

Suppose that no other line of .Z is parallel to either PAQ or RAS (if one is, rotate it slightly).
Extend every such line to cross all the 4 framing lines. Move the convex boundary outwards to
enclose all these intersections, and extend all lines to the boundary.

This creates an extended lattice £, asin figure 7. Assign coefficients to the new sites and angles
in &’ according to the rules given above, choosing the angle coefficients between PAQ (and RAS)
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and the framing lines to be Kp g and Ky, q, necessarily equal angles having equal coefficients.
Then by considering triangles it is straightforward to verify that the angle coefficients for any
intersection of two framing lines are also Ky, and Ky, , necessarily equal angles having equal
coefficients.

Suppose that originally the boundary spins in .# (i.e. those on faces adjacent to the boundary)
were fixed to be up. Do the same for ¢’ and consider correlations between the spins round A,
such as {oy), {oy0,).

Ficure 7. The lattice of figure 14, extended as in §5. The inner dotted line is the old boundary, the outer one is
the new boundary. The correlations of the four spins round A are unchanged by making parallel shifts of the
framing lines inwards towards PQ and RS.

These are of course not the same for the model defined on % as for the model defined on #”.
However, if A is originally deep in the centre of . (i.e. any path through faces from A to the
boundary crosses a large number of edges), then we expect the local correlations to be insensitive
to the position of the boundary, and in the limit of % large we do expect them to be the same for
&L and &',

There is a problem here: if the Boltzmann weights are not all positive then local correlations
may be sensitive to boundary conditions. From the construction used to extend % it is not obvious
that all the new weights generated will be positive. However, this is probably not a serious diffi-
culty. In particular, if & originally has a periodic structure (e.g. the Kagomé lattice discussed
later), no new weights are generated by extending % to £, so if they were originally all positive
for .Z, then they are also all positive for £”.

Now shift the framing lines of #”’ inwards towards A, keeping them parallel, until all the origi-
nal sites of # (other than A) lie outside the frame. This does not alter the order of the lines at the
boundary, and no line crosses A, so {o3), {770,,), etc. are left unchanged, because of the Z-
invariance of %”’.

Now, however, the picture is quite different: A is at the centre of a regular parallelogram
lattice of (2M + 1) by (2M + 1) lines. Outside this lies the original lattice . We still expect the
local correlations to be insensitive to what is going on many sites away from A, so if M is large we
expect the local correlations to be the same as those of this regular lattice.

26-2
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But this lattice is just the regular square lattice eight-vertex model, with interaction coeffi-
cients Kpyp, Kgraq, K. Thus the correlations (o), {0, 0,), etc. are the same as those of this regular
model.

In particular, the local magnetization, polarization and internal energy U, of the lattice ¥
are given by

(o = M(4,K") (5.1)
(o10y) = P(4, K") (5.2)
~PUs = Kppr{9107) + Kraq {0 0p) + K070, 0,0, = u(Kpsg, Kpag, K"),  (5.3)

where M, P, —f~'u are the magnetization, polarization and internal energy per site of the
regular square-lattice eight-vertex model with interaction coefficients Kp, i, Kgaq, K”. The first
two of these are known to depend on Kp, g, Kz, only via 4 (Barber & Baxter 1973; Baxter
& Kelland 1974). (This can also be established by the present methods.)
Note that (o;) is therefore the same (in the thermodynamic limit) for every face of #. Similarly,
(0,0, is the same for every edge.
Free energy

Let F = — f~1In Z be the total free energy of #. Increment all the site and angle coefficients by
infinitesimal amounts 8K”, 8K, i, etc. Then from (2.1), (2.2) and (2.3) the increment induced
in — gFis

—8(fF) = Z[3Kpr{(070,) +0Kprq {0, 0,) + 3K (070,07, 0,,)]. (5.4)
where the summation is over all sites A of .%, as in (1).

Let fy = f(Kpsr, Kraq, K”) be the free energy per site of the regular square lattice model, with

coefficients Kp,g, Kgaq, K”. Then from the above remarks

(010, = —0(Bfa) /0Kpar,
<Unt Up> = —a(ﬂfA)/aKRAQ: (5.5)

. . L. <Ulgmgngp> = _a(ﬁ.fA)/aK”s
provided A is deep inside .Z.

Assuming that we can ignore the contribution to the sum in (5.4) of sites that are near the
boundary, it follows that

S(BF) = Z3(8fa)s (5.6)
where 8(4f,) is the increment induced in gf,. Thus
BIF—2f4]

is stationary with respect to variations in the interaction coefficients, provided the model on %
is Z-invariant.

However, while keeping the model Z-invariant, one can continuously vary the interactions
until all the coefficients are large and positive, when it is trivially true that F'— X f, is zero. Thus
for any Z-invariant model one must have

F =2 f(Kpsgrs Kpags K"), (5.7)

the summation being over all sites A of .Z.
This is the key result of this paper. The free energy of any Z-invariant lattice model is the sum
of site free energies, the site energies being those of the regular square lattice model.
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There are previous results that have suggested this: notably an inhomogeneous square lattice
model (Baxter 1972, eqn 10.4) and the six-vertex model on the Kagomé lattice (Baxter, Tem-
perley & Ashley 1977, eqn 47).

6. ELLIPTIC FUNCTION PARAMETRIZATION

The star-triangle relations and the Z-invariance conditions can be written very simply by
introducing elliptic functions.

The four-spin interaction coefficient K” must have the same value at each site of %, and so
must 4. If these two values are given, then (4.8) is a relation between the two angle coefficients
K; and K at site j.

Define two site-independent parameters o, £2 by

coth 2K” = cosh Q2

— A coth2K” = cosh . (6.1)
Then (4.8) can be written as

cosh w = cosh 2K cosh 2K + cosh £ sinh 2K sinh 2K. (6.2)

Although this relation concerns only a single site of ., formally it is the same as that between
the sides w, 2K;, 2K; of an hyperbolic triangle, with angle n+if2 between the sides 2K;, 2K;
(Onsager 1944, p. 135; Coxeter 1947). This is the same as that for a spherical triangle with sides
of pure imaginary length.

Itis well known that this relation can be simplified by introducing elliptic functions of modulus

k = sinh 2/sinh & (6.3)

(Greenbhill 1892, §129). Onsager (1944, p. 144) refers to this as a uniformizing substitution.
From (6.1) and (6.3) it follows that

k=% = A2 cosh? 2K” —sinh? 2K, (6.4)
16(1 +w'v") (v+20"v") (v +0"v) (v" +w")
-2
and from (4.8) that k2 = (e (T DE (D) , (6.5)
where v =tanh K;, " =tanhKj, ¢" = tanhK". (6.6)

It is interesting, but probably quite irrelevant, to note that this £ is the same as the elliptic
modulus which occurs in the solution of a triangular two-spin Ising model with interaction
coefficients K, Kj, K" (Green 1963; Stephenson 1964).

Let A", A" be the complete elliptic integrals of the first kind of moduli, &, &' = (1 —£2)%,
respectively. They are nof to be confused with any of the interaction coefficients used above,
notably with K; and K.

Following Greenhill (1892), but making a few notational changes, we define ;, §;, A by

2K} = —iam[i(A" — )],

9K, = —iam[i(A" - )], (6.7)
2K” = iam[i(#" = A)].
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Then from (6.1), (6.3) and various standard relations for the Jacobi elliptic functions
(Gradshteyn & Ryzhik 1965, §§ 8.143 and 8.151.2)

cosh 2K = ik~1ds (ia;),
sinh 2K} = i/[ksn (ia;)],
cosh 2K; = ik~1ds (if)),
sinh 2K; = i/[ksn (i8;)],
coth 2K” = cosh 2 = —dn (iA), (6.8)
sinh 2K” = —i/[ksn (iA)],

o =iaml[i(2X4" —A)],

4 = —cn(id) /dn(id),

where ds() = dn(«)/sn(x).
Substituting these expressions into (6.2) and using the elliptic function identity

k*cn (u+v)snusnv = dnudnv—dn (u+v), (6.9)
we find that (4.8) is satisfied if o+ = A (6.10)

Also, by using the relations (6.7) and (6.8) in the equation (4.10), and using (6.9) and (6.10) to
simplify the right hand side, (4.10) becomes

[dn (if,) dn (if) —dn (ia,)]/[£*sn (ify) sn (185)] = cn (io). (6.11)

From (6.9) this is clearly satisfied if
oy = fa+ P (6.12)
or, by using (6.10), if Ayt oyt oy =21, fi+Lfs+ 05 = A. (6.13)

Since these relations are unchanged by permuting the suffixes 1, 2, 3, the other two equations
that can thereby be obtained from (4.10) are also satisfied.

The relations (4.7) and (4.10) imply (4.4), so the original star-triangle relations are satisfied
by the definitions (6.4) and (6.7), and the relations (6.10) and (6.13).

So far we have made no restriction on the values of the interaction coefficients, other than those
imposed by the star-triangle relations. From (6.4), £ may be greater or less than one, or may be
imaginary. Whatever the value of £, there will always be parameters o;, £;, A that satisfy (6.7),
(6.10) and (6.13), but they may be complex.

To fix our ideas, and to give a real single-valued definition of a;, £;, A, it is desirable to focus
attention on the case when at every site j of .2 the two angle coefficients K; and Kj satisfy

sinh (K; + K}) > e¢=*" cosh (K; — K}). (6.14)

From (3.5) this is equivalent to the condition ¢; > a;+b;+4;. This is the ferromagnetically
ordered phase of the eight-vertex model.

From (4.8), this implies that A< —1, (6.15)
so from (6.4), k=2 > 1 and we can choose £ so that

0<k<1. (6.16)
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The obvious solution of (6.7), together with the definition of ", ", is then

2 =f°° (1 +A2sinh? §)~F dgh, (6.172)
2K}

B, =J (1 +k2sinh? g)-} dg, (6.175)
2K

Py =f°° (1 + k2sinh? ¢) - dg, (6.17¢)
—2K”

oz =f°°(1 +A2sinh?® ¢) - dg, (6.17d)
0
b ,

%:f (1 — k2sin?0) -} do, (6.17¢)
0

so that a;, 8}, A are real and positive. For this case this solution is indeed the one that satisfies

(6.10) and (6.13), so
0 <a,f; <A<2X", (6.18)

Note that K3, K, K3, a,, oy, g are associated with the exterior angles of the triangle ABC,
while K, K,, K, 1, Bs B3 are associated with the interior angles.

Z-invariance conditions in terms of the elliptic angle parameters

In the above equations (6.2) to (6.18) we have considered a triangle with vertices 1, 2, 3,
interior angle coefficients K;, K,, K, and exterior angle coefficients K3, K;, K3. To develop a
notation appropriate to the whole lattice, we note that K", 4, k, A are the same for all sites, to an
angle PAR is assigned an interaction coefficient Ky, g, and, from (6.17a or b), an elliptic angle
parameter

ApAR = LKPAR (14 k%sinh? @)t dg. (6.19)

Then a lattice % is Z-invariant if the relations (6.10) and (6.13) are satisfied for every basic
triangle formed by two lattice lines and the base line, i.e. if

(i) the sum of the two elliptic angle parameters at every site is A,

(i) the sum of the elliptic parameters of the interior (exterior) angles of every basic triangle is
A (22).

General formulae for all the elliptic angle parameters can now be given. Suppose that all sites
of Z lie on the same side of the base line and rotate the lattice until the base line is horizontal and
below #, as in figure 1. Label the lattice lines 1, ..., N. Let X be a point on the base line to the
right of all the lattice lines.

Consider a line r. Let A be a lattice site on r and E its intersection with the base line, as in figure
5 (regarding EDFX as the base line). Define

ar = “AEX' (6.20)

There are N such ‘line angle parameters’.
Now consider a typical site of &, such as A in figure 5. Let r be the line AE, s be the line AF,
E and F lying on the base line, E to the left of F.
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Since AEF is a basic triangle, it follows from (i) and (ii) that

Haaw = % 5 } (6.21)

OLEAB = A'l‘ar—‘as.

Thus the elliptic parameters of the angles of intersection of lines r and s can be simply written in
terms of ag—ar and A.

The quadrilateral theorem is now trivial. Let t be the line BCD in figure 5. Then the star-
triangle relations (i) and (ii) for AEF, BFD, CDE imply (6.21), i.e.

OLBAC = A‘I‘ar—as,

FacB = Xt — &r, (6.22)

OLCB A = Olg— At
Adding these equations gives the required star-triangle relation for ABC, namely
agact+dacs +%epa = A (6.23)

Thus the sum of the elliptic parameters of the interior angles must be 2A.
More generally, one can readily prove:
(iii) the sum of the elliptic parameters of the exterior angles of any polygon in % must be 2A.
This is a useful observation, since if (i) and (iii) are satisfied, then the model on .% is Z-invariant.
This provides an alternative definition of Z-invariance that does not require the artificial intro-
duction of a base line.
Geometric model

This formulation with elliptic functions and integrals makes it quite clear that the Z-invariance
conditions have a geometric interpretation. In fact, for a given lattice .# and given values of
k, A(K", 4) there is a particularly obvious choice of the angle parameters, namely that for any

angle PAR opar = (A/m) x the angle PAR (radians). (6.24)

The conditions (i), (ii), (iii) are then automatically satisfied. We call this the ‘geometric’
model. Many models, notably the anisotropic square and Kagomé lattice models, can be con-
verted to geometric models by rotating some of the lattice lines (e.g. so as to convert the square
lattice into a parallelogram lattice).

The condition (6.14) can be somewhat relaxed without introducing complex elliptic angle
parameters. It can be replaced by the requirement that the v, v’, v” defined by (6.6) satisfy

"

v+ov", v +0"v, v+ >0 (6.25)

for every site of .#. This is automatically satisfied if the model is ferromagnetic, i.e. all the inter-
action coefficients are positive. From (6.5) it implies only that £2 > 0, whereas (6.14) implies
0 < k% < 1. Real positive parameters A, ap i may still be defined by (6.17¢) and (6.19), and the
Z-invariance conditions are still equivalent to the conditions (i) and (iii).

Alternatively, if (6.25) is satisfied but (6.14) is not, then 4% > 1 and it is natural to use elliptic
functions of modulus £* = £~1. Specific formulae for doing this are given in equations (9.3)—(9.8).

Connection with Onsager’s parametrization: the case K” = 0

As was remarked in section 2, if K” = 0 the eight-vertex model factors into two independent
two-spin Ising models. From (4.8) and (6.4),

k = 1/|sinh 2K;sinh 2K}]. (6.26)
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For the square lattice this is the elliptic modulus used by Onsager for the low-temperature case
(Onsager 1944, eqn 2.1a). Onsager’s parameters 4, 4" — a are our parameters %"~ —a;, #"' — f3;.
From (6.17¢)

A=A" (6.27)

so from (6.10) the sum of #” — &; and ™ — §; is "', in agreement with Onsager.

7. EXPRESSIONS FOR f, M, P

The regular square-lattice function fin (5.7) has been obtained (Baxter 1972), using the ferro-
electric formulation of the model described in § 3. The result can be summarized as follows (nega-
ting & in the 1972 paper).

Let K, Kj, K" (= KJ) be the interaction coefficients (the same for every site in the regular
square lattice model). Let a, b, ¢, d be the Boltzmann weights defined by (3.5) (temporarily
dropping the suffix j). Define

wy = 3(c+d), wy= %(6—4),} (7.1)
wy = §(a+b), wy=}(a—0b). .
Rearrange and negate (if necessary) wy, ..., w, until they satisfy
Wy > wy > wy > |w,l. (7.2)

Now define new weights g, 4, ¢, d so that (7.1) is again satisfied. Call these &', &', ¢’, d’. From
(7.2) they are positive and satisfy
¢ >a +b'+d. (7.3)
(This procedure maps the model into the ordered ferromagnetic phase, while leaving the parti-
tion function unchanged.)
Define an elliptic modulus 4; and parameters 3, » such that

a':b':c’:d =sn(n+v,kp)isn (9—0,kp): } (7.4
sn (29, ky): —kpsn (27, ky) sn (7 +0, kp) sn (7 — 0, ky).
These can and are to be chosen so that £ is real, satisfying
0<k <1, (7.5)
while # and v are pure imaginary, satisfying
[Tm (v)] < Im (7) < 37, (7.6)

where in this section ] and 4’| are the complete elliptic integrals of the first kind of moduli
ky, by = (1—£k2)3, respectively. They are not interaction coefficients.
Define ¢, x, z by (Baxter 1972, eqns D4-D 8)

¢ = exp (— A /), x = exp (ing /A7), 2 = exp (im/H5). (7.7
Then ¢, %, z are positive real, satisfying
0<g<x?<l, x<z<uzx (7.8)
and f, the free energy per site, is given by (Baxter 1972, eqn D 37)

, "o , © x—n(xzn_qn)z(xn_l_x—n_zn__z—n)
T KR = e B i (e

(7.9)

27 . Vol. 28g. A.


http://rsta.royalsocietypublishing.org/

'y
N
o \

L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/ \

r

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

332 R.J. BAXTER

Also, Barber & Baxter (1973) and Baxter & Kelland (1974) conjecture that in the ordered
phascs M and P arc given by

o {_ x4n2

M H 1 +x4n—2 (7'10)
© 14 qn 1 — x2n
pe fi [ )
They are certainly independent of z.
Relation between the elliptic parametizations in the ordered ferromagnetic phase
From (3.5) and (4.8), K" and 4 may be expressed as functions of a, b, ¢, d:

exp (4K") = cd/ab (7.12)

A = Y(a®+b%—c*—d? [(ab+cd). (7.13)

Suppose that (6.14) is satisfied, i.e. that ¢ > a+b+d. Then the a’, &', ¢/, d’ in (7.4) arc the
original weights a, b, ¢, d. Substituting (7.4) into (7.12) and (7.13) gives

exp (2K") = —ik}sn (29, ky) (7.14)
__¢n (2775 k[) dn (2773 kI)
A== @ k) (7.15)
Substituting these cxpressions into (6.4) gives
k=2k}/(1+k). (7.16)

Thus the elliptic moduli £, £y are rclated by a Landen transformation. By using §8.152 of
Gradshteyn & Ryzhik (1965), it follows from (7.14) or (7.15) and (6.8) that

A= (1+4) 2. (7.17)
Also, from (3.5) sinh 2K = (bc—ad)/[2(abed)}], (7.18)
so, by using (7.4) sinh 2K} = 3ikr¥[1 +kysn2(g +v, kp)]/sn (9 +0, k). (7.19)

From §8.152 of Gradshteyn & Ryzhik (1965) and (6.8), it follows that
= (1+kq) (7+v), (7.20)
and, noting that negating v is equivalent to interchanging K; and K,
if; = (14+k) (n—v). (7.21)

Notc that (7.17), (7.20) and (7.21) imply the relation (6.10).
The elliptic integrals X", ™, A7, Ay arc rclated by

A = (L+ky) Ay, A =3(1+k) A1 (7.22)

By climinating %, v, 47, 2’1 between (7.7), (7.17) and (7.20)—(7.22), and exhibiting the site
dependence of z, it follows that

g = oxp (= 2m"[h), ¥ = cxp (= mA/2),
z=2z; =exp[—mn(e;—f;)/2X]. (7.23)
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Together with (6.17), (6.4) and (4.8), this provides an explicit real definition of ¢, x, z; for the
ordered ferromagnetic phase.

Note that ¢ and x depend only on £ and A, i.e. on K" and 4. Thus they are the same for all sites
of the lattice %, while z varies from site to site. Its value z; at site j is given by (7.23), «; and g;
being the elliptic parameters of the two angles at j. The order of the two angles is irrelevant
here, since (7.9) is unchanged by inverting z.

Phase boundaries
The free energy function f(K;, Kj, K”) defined by (3.5) and (7.1)—(7.9) is analytic except when
the middle two w’s, in numerically decreasing order, are equal, i.e. when

a=b+c+db=a+c+dyc=a+b+d or d=a+b+c. (7.24)

At these surfaces the correlation length goes to infinity (Johnson, Krinsky & McCoy 1973), so
they are surfaces of critical points.
From (7.12), (7.13), (6.4) and (3.7),

k-2 = a*b¥c*d* /abed, | (7.25)
1—k  (a—b+ctd)(—at+b+otd)(a+b+e—d) (—a—b+c—d) (7.20
K 16 abed : ’

Thus k2 = 1 if, and only if, the system is critical.
The system is in an ordered phase if one of @, b, ¢, d is greater than the sum of the other three.
From (7.26) and (6.4) this implies that

0<k2<1(|4] >1), (7.27)
and vice versa.

The system is disordered if each of a, b, ¢, d is less than the sum of the other three, i.e. if
k2 < 1(|4] < 1). : (7.28)

Although a, b, ¢, d may vary from site to site, £ (and 4) does not. Thus for any lattice £ we
expect a Z-invariant model to be ordered if (7.27) is satisfied, disordered if (7.28) is satisfied, and
to be critical if #2 = 1 (and 4 = +1).

The definition (7.1)—(7.9) of fis somewhat cumbersome to use in the disordered phase, there
being eight different cases to consider. This is related to the fact that £% can be either positive
(greater than one), or negative. Nevertheless, fis analytic throughout the disordered phase.

8. KAGOME LATTICE EIGHT-VERTEX MODEL

So far, we have considered a very general ‘lattice’ #, made up of almost any set of intersecting
straight lines. The advantage of doing this is that it brings out very clearly the trigonometric
character of the star-triangle conditions on the interaction coefficients of the eight-vertex model.
It is, however, unnecessarily general for the purpose outlined in §1.

In this section we specialize to a regular eight-vertex model on the Kagomé lattice shown
in figure 8. This can be divided into three equivalent sub-lattices, labelled 1, 2 and 3 in figure 8.

Associate spins with the faces of the lattice. On every up-triangle assign-the same set of two-spin
interaction coefficients K, K,, K, K3, K;, K5 as indicated in figure 9. Also assign the same four-
spin interaction coefficient K” to every set of four spins round a site of the Kagomé lattice. The

27-2
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Hamiltonian is then given by (2.1), with Ky, i and Ky,q equal to the appropriate two-spin
coefficient, and K = K".

The spins on the triangular faces form a honeycomb lattice, interacting with their nearest
neighbours with coefficients K;, K,, K,, as indicated in figure 9. The spins on the hexagonal
faces form a triangular lattice, with interaction coefficients Ki, K;, K.

X AKX
(XXX

\ /1 2\ /

Ficure 8. The Kagome lattice, with sites divided into three equlvalent classes 1, 2, 3.

FiGure 9. An up-triangle of the Kagomé lattice. The solid lines are lattice edges, while the circles and triangles
denote the spins associated with the lattice faces. Broken lines represent two-spin intersections, the corres-
ponding coefficients K, ..., K; being shown.

Thus this eight-vertex model consists of an honeycomb and a triangular Ising model, with
four-spin interactions between them.

We require that the star-triangle relations (4.4) be satisfied for every up-triangle of the type
shown in figure 9, i.e.

exp (2K; +2K3;) = cosh (K, + K, + K3— K”) /cosh (— Ky + K, + K3 + K”),

exp (2K3+2K3]) = cosh (K; + K, + K3— K") /cosh (K, — Ky + K3+ K”), (8.1)
exp (2K7 +2K;) = cosh (K; + K, + K3— K") /cosh (K, + Ky — K3+ K").
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The model is then Z-invariant, so the thermodynamic properties are given by (5.1), (5.2) and
(5.7). In particular, the mean free energy per site of the Kagomé lattice model is given by

Jagoms = §Lf (Ky, K3, K") +f (Ky, Kz, K7) +f (Ky, K3, K7)], (8.2)

where f(K;, K;, K") is the free energy per site of a regular square lattice model with coefficients
K;, K}, K", given by equations (3.5) and (7.1)—(7.9).

Since the two-spin interaction coefficients K, K,, K, K3, K3, K3 are arranged in the same way in
figure 9 as in figure 4, many of the formulae of previous sections, e.g. (4.10), can be applied
directly to this Kagomé lattice model. Note however that there is a difference in viewpoint:
previously K, ..., K3 were the coeflicients of some typical triangle in %, different for different
triangles. Here K, ..., K} (and K”) specify the complete Hamiltonian, being the same for all up-
triangles in the Kagomé lattice.

YOOI
OO00

N /1 2\ /

Ficure 10. The deformation of the Kagome lattice that corresponds to lettmg K, become infinite. The resulting
lattice is essentially rectangular.

Previous models as special cases

In general the conditions (8.1) are temperature-dependent. Nevertheless, the model is still
very interesting, since it contains as special cases all the previously solved models (i) to (vi) listed
in §1.

If K" = 0, the model factors into a honeycomb and a triangular Ising model. The three
coefficients K,, K, K; of the honeycomb model may be chosen arbitrarily. The coefficients
K;, K;, K} of the triangular model are then given by (8.1), but this is the star-triangle relation, so
the two models are equivalent and the properties of either can be deduced from the properties
of their product. Thus this model includes (ii), and hence (i), as a special case.

Alternatively, suppose K” # 0 but let K3 — +0c0. Then from (8.1)

K=K, K;=K, (8.3a)
=-K". (8.35)

Consider the interactions between the four spins on faces /, m, n, p round a site of type 3, as in
figure 9. Since K3 —~ + 0, 7, and o, must be equal. The remaining interactions are

K;oy0,+K"0y0,0,,0 (8.4)

n“mYp

Since o, = 0, = *1, it follows that o, 0, = 1. From (8.35) the interaction (8.4) therefore
vanishes.

Thus in the limit Kj-—>o0 the faces m and p can be identified and the faces / and # separated.
Graphically this is equivalent to deforming the Kagomé lattice of figure 8 to the lattice of figure 10.
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The latter is simply a square lattice. Using (8.834) we find that the model is now a regular
square lattice eight-vertex model, with two-spin interactions K; and K, and four-spin interaction
K". Thus (iv), and hence (iii), are special cases of the Kagomé lattice model.

An interesting isotropic case is when K; = K, = K3 = K”, which from (8.1) implies that
K| = K; = K; = 0. Let oy, ..., 0g be the six spins round an up-triangle, as in figure 44. Then from
(4.24) the contribution of the triangle to the partition function is

W, = 2cosh[K"(0y+ 03+ 05+ 0,040, + 030,04+ 050,0)]. (8.5)
Using 0% = 1, one can verify that this is the same as

Wy = 2cosh[K" (0,03 + 0,03 +03 0,4+ 0,05+ 0506+ 004)]. (8.6)
(An easy way to do this is to verify that the squares of the bracketted expressions in (8.5) and

(8.6) are the same.)
From (8.6), W] can be written

W, = Xexp[K'oo(0105+ ... + 06 01)], (8.7)

where o, can be regarded as the spin inside the up-triangle, as in figure 4. But this is just the
triangle contribution to the partition function of a system with Hamiltonian
—pH = K"Z o050y, (8.8)

the summation being over all triplets of spins consisting of one spin inside an up-triangle and two
surrounding spins that are adjacent to one another. If two spins are regarded as ‘neighbours’ if
they both lie in such a triplet, then they form a triangular lattice, and the sum in (8.8) is over all
faces of this lattice. Thus (8.8) is then the Hamiltonian of the three-spin model (v), which is
therefore also a special case of the Kagomé lattice eight-vertex model.

As was remarked in §1, (v) can also be transformed to a square-lattice eight-vertex model
(Baxter & Enting 1976).

Finally, by using the vertex formulation of §3 and remembering that K" is site-independent,
(3.5) and (8.1) imply that the vertex weights must satisfy

¢1d1/a1by = 6y dy/ayby = c3dy/azbs, (8.9)
bifc; = (aja,—b;by)/(c; 0, —d;dy), (8.10)
for all permutations (3, j, k) of (1, 2, 3).
Setting d; = d, = dy = 0, the model becomes the six-vertex model solved by Baxter, Temperley
& Ashley (1977), (8.10) becoming their restriction (6).

Classification of phases

Returning to the general Kagomé lattice model, the coefficients K;, K,, K3, K" can be regarded
asindependent real parameters. Then K7, K, K; are uniquely defined by (8.1) and are also real.
The elliptic modulus £ is given by (6.4) and (4.8). Using (8.1) to eliminate Kj, and setting

L, =—-K,+K,+K,— K", L2=K1_K2+K3_K”’} (8.114)
Ly =K, +K,—K;— K", L;=K,+K,+K;+K,
M, = —K,+K,+K;+K", M2=K1~K2+K3+K”’} (8.115)
M3=K1+.K2—K3+K”, M4=K1+K2+K3—K”’

l=-coshL;,, m=coshL, n=coshL; p=coshlL, (8.12)
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we find after some lengthy algebra that
A = — [cosh M, cosh M, cosh M, cosh M]3
x {sinh 2K" + 2 tanh 2K" cosh 2K, cosh 2K, cosh 2K + 2 sinh 2K, sinh 2K, sinh 2K,}, (8.13)

1=k (=l4+mtntp) (I—mtn+p) (+m—n+p) (—l—m—n+p)
kK2 16 cosh M, cosh M, cosh M, cosh M, )

(8.14)

[Also, £—21s given by the right hand side of (8.14), but with each cosh in (8.12) replaced by sinh.]

Using the argument of §7, we expect the model to be in an ordered phase if 0 < £2 < 1,
disordered otherwise. From (8.11)—(8.14) it follows that there are eight domains in (K, K,, K,
K") space in which the system is ordered, namely those in which one of /, m, n, p is greater than the
sum of the other three, the corresponding L; being either positive or negative. There is one domain
in which the system is disordered, namely when each of [, m, n, p is less than the sum of the other
three.

The archetypal ordered phase is

p>l+m+n, L,>0. (8.15)

In this domain the spins on each sub-lattice are ferromagnetically ordered. If ay, oy, o0, By, Bs, B3
are defined by (6.17), then (6.10) and (6.13) are satisfied. Parameters ¢, %, z;, 25, z3 can then be
defined by (7.23). By using (7.9) and (3.5), the free energy function in (8.2) is then given by

@0 x—n<x2n_ qn)z (xn__}_x-—n__zz_'&_ Zj_”)

- Bf(K; K5, K') = K;+ K+ K +n§1 n(1—q2") (14 x27)

(8.16)

If the conjectures of Barber & Baxter (1973) and Baxter & Kelland (1974) are valid, then the
spontancous magnetization and polarization are given by (7.10) and (7.11).

The other seven ordered phases can all be mapped to (8.15) by reversing some of the lattice
spins. For instance, reversing the spin inside each up-triangle is equivalent to negating K, K,,
K, K", while leaving K7, K3, K3 unchanged. Thisnegates L,, ..., M, and leaves £ unchanged. Thus
it maps the domain (8.15) to p > [+m+n, L, < 0; and vice versa.

Also, reversing the spins between alternate pairs of the horizontal lines in figure 8 is equivalent
to negating K;, K,, Ky, Kj, while leaving K, K3, K” unchanged. From (8.11)—(8.14) this leaves
unchanged but maps (8.15) to the domainz > [+m+p, Ly < 0; and vice versa.

Similarly, one can reverse all the spins between alternate pairs of parallel diagonal lines in
figure 8, thereby mapping (8.15) to either I > m+n+p, L, < 0,ortom > l+n+p, L, < 0. These
domains can then be mapped to the domains with corresponding L; > 0 by further reversing the
spins inside each up-triangle.

The disordered domain is

Lymyn,p < 3(l+m+n+p).
(Note that these inequalities are certainly satisfied if the interaction coefficients are all small.) In
this domain M and P must be zero. The free energy can be obtained from (8.2), by using the
definitions (3.5), (7.1)—(7.9) of the function — gf(K;, K}, K").
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Critical behaviour

Since the restrictions (8.1) can in general only be satisfied for a few discrete values of the
temperature (if any), we cannot discuss the temperature dependence of the model. Nevertheless,
we can define a parameter which plays the same réle, namely

t= (kK—1)/k2 (8.17)

This is positive for the disordered phase, negative for ordered ones, and vanishes linearly on a
path in (K, K,, K;, K") space as a critical surface is crossed non-tangentially.

Suppose one starts in the ordered ferromagnetic phase and approaches the critical surface
p=1+m+n, L, > 0. Then £? tends to one from below. From (6.17), a, oy, 65, By, Bay B3 A and
" all remain finite and analytic, while 2" diverges, being given by

A" = %In[—16/t] + vanishing terms. (8.18)

From (7.23), ¢, x, z,, z,, z5 therefore all tend to one, and the expressions (7.9)—(7.11) for f; M, P
become very slowly convergent. It is then appropriate to make a Poisson transform of these series
and products (asis explained in Baxter (1972), Barber & Baxter (1973), Baxter & Kelland (1974))
Doing this, the dominant singular contribution to — #f’is found to be given by

(= B sims < exp (— 2082, (8.19)
while M and P are given by M ~ 2Yexp (— n/8A), (8.20)
P (227 )2 exp[— k(247 — X) JAAK ). (8.21)

From (6.17d), 4" = }n at criticality. From (8.18) it follows that
(= Bf)singoc (— )™, (8.22)
Moc (—1)mhea, (8.23)
Poc (— )=, (8.24)

Thus the critical exponents are the same as those for a corresponding square lattice, namely
a=2—n/A, Py =mn/161, Pe=(n—2A)/4A, (8.25)

A having the same value at criticality as the parameter x or 7z used in earlier papers. It is defined
by (6.17¢). At criticality £% = 1, so A is then given by

cosA = —tanh2K", 0 <A< 7. (8.26)

For the Ising model case, K" = 0O and A = X" = 1/2.
This formula applies on the critical surface p = {+m+n, L, > 0, when 4 = — 1, so can be
replaced by cosA = A1tanh 2K”, 0 < A < =. (8.27)

From (8.13), A~! tanh 2K” is unchanged by the various mappings between the eight ordered
states described above, so (8.27) and (8.25) are valid on all eight critical surfaces of the Kagomé
lattice model. By using (7.12) and (7.13), (8.27) can be written in terms of the Boltzmann
weights of a site of type j as

COSA = Z(C]dj"d]b])/<a?+b?—6?—d?)’
0<A<m. (8.28)

On a critical surface, one of a;, b;, ¢;, d; is equal to the sum of the other three.
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9. TWO-SPIN CORRELATIONS

Arguments similar to those of § 5 can be used to establish remarkable equivalences between the
two-spin correlations of Z-invariant lattice models.

Consider any two faces / and z of an arbitrary lattice .Z, asin figure 11. Construct a Z-invariant
eight-vertex model on %, with given values of K” and 4, and consider the correlation {o;0,).
Suppose that / and z are deep within ., so that boundary conditions are irrelevant.

M \ \ ;/ / A \ “ M

v o
”a v a v a

/R

F\

Ficure 11. A lattice % extended by adding a rectangular frame aligned to the line PQ between faces ! and m.
The broken line is a base line of Z.

Let P be a point inside /, Q a point inside m, chosen so that the line PQ does not pass through
any lattice site. Orient the lattice so that PQ is horizontal. The line segment PQ intercepts some
of the lattice lines. Label these 1, 2, ..., m. Let K], K, be the angle coefficients of the intersection
of line r with some base line, ordered as in figure 11. Let «,, , be the corresponding elliptic angle
parameters, defined in the ferromagnetic phase by (6.17), (6.5) and (6.6). Thus &, + £, = A, and
o, is the ‘line angle parameter’ (6.20).

We shall show that (o, 0,,) is a function only of m, K", 4 and K3, ..., K, K, ..., K,,, the function
being independent of the structure of £. In particular, it is unchanged by simultaneously inter-
changing K; with K}, K; with K.

By using the elliptic parameters of §6, this implies that

<O'lo_'n> =gm(k’ A) %15 '“’am)> (9.1)

where the function g,, is the same for all Z-invariant models, and is a symmetric function of
Oy +eey %y Adding the same constant to each of ay, ..., a,, re-defines the coefficients on the base

28 Vol. 289. A.
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line, but from (6.21) leaves the coefficients at the sites of % unchanged. Thus g,, must be a
function only of the differences of «y, ..., ,,.

Note that g, is the correlation between two adjacent spins, i.e. the polarization. We have
already seen that this is a function only of £ and A.

To establish these results, first extend % by adding 2M lines parallel to PQ, M being close
together and above Z, the others being below Z, as in figure 11. Choose the angle coefficients of
the intersections of these lines with lattice line 7 to be K, K,, for r = 1, ...,m. For example, in

ﬁgure i KRDF = KREG = KDRU = KDSV = K,’.,

Kgpx = Kggy = Kpgy, = Kpgu = K,.
This is consistent with Z-invariance.

Further extend . by adding 2M vertical lines, M to the left of £ and M to the right of Z.
Thus there are 4M lines forming a rectangular ‘frame’ around Z. At all intersections of framing
lines assign the same coefficient K|, to the top-left and bottom-right angles, K to the other two
angles, choosing K, K; to satisfy (4.8), with 4; = 4.

Extend all lattice lines (rotating them slightly if necessary) to cross all the framing lines. Extend
the convex boundary outwards to Include all these intersections. Assign coeflicients to new inter-
sections according to the rules of §4.-

T
i

Ficure 12. The irregular rectangular lattice obtained by shifting the framing lines of figure 11 inwards towards
P and Q, and then neglecting sites outside the framing lines.

Suppose this can be done without introducing non-positive Boltzmann weights (for the geo-
metric model of § 6 this is certainly so). Then (o3, ) should be the same for this extended lattice
as for the original lattice %, provided / and z were originally deep within 2.

The extended lattice is by construction Z-invariant. Shift the framing lines inwards towards
PQ until all sites of & lie outside the framing lines, as indicated in figure 12. This does not change
the order of the lines at the boundary, nor does any line cross face [ or face #. From §4 it follows
that {o;0,) is unchanged.

However, the picture is now quite different. From figure 12, / and 7 lie in the same row of a
rectangular lattice of 2M rows and 2M columns. The coefficient of the top-left (top-right) angle
is K, (K;,) for a site on column and between Pand Q . Itis K, (Kp) for a site on a column to the
left of P, or to the right of Q . The four-spin coefficient K” and the parameter 4 are of course the
same as in the original lattice .Z.

If M is large, we expect (o, 0,,) to be unchanged by deleting all sites outside this rectangular
lattice, so (0,0, is the correlation between two spins in the same row of a rectangular lattice
model. The model is not regular, since the two-spin coeflicients vary from column to column.
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Further, in the extended lattice we could have also made parallel shifts of lines 1, ..., m to
re-order their intersections with the line PQ) . This also leaves the boundary order unchanged, and
no line crosses face [ or face n, so (o, o,y isunchanged. Hence {0, 0,,) isindependent of the order of
columns 1, ..., m in figure 12. This establishes the assertions made above, in particular equation
(9.1).

Intra-row correlations in the Kagomé lattice

In specific cases it may be possible to simplify the above argument. For instance, consider the
correlation {o;0,), where [ and z are the faces of the Kagomé lattice shown in figure 8. By con-
sidering a finite, but large, lattice with extended external edges, it becomes apparent that the
horizontal lines above (below) / and z can be shifted far upwards (downwards), while leaving
(0,0, unchanged. Thus (o, 0,), and any correlation between spins in the same row, is the same
asif all horizontal lines in figure 8 were deleted. Thisleaves a regular square lattice drawn diagon-
ally, with coeflicients K3, K3, K”. Thus intra-row correlations for the Kagomé lattice are the
same as those of this square lattice.

For the six-vertex models this has been established directly by Baxter, Temperley & Ashley
(1977, §2.3) using the results of Kelland (1974).

Since the correlation length £ of the square lattice model diverges when 4% = 1 (Johnson,
Krinsky & McCoy 1973), that of the Kagomé lattice model of section 8 must do so in the same

way, i.e. Eoc (=), (9.2)
where at criticality A is defined by (8.27) or (8.28).

Commuting transfer matrices

Just as the intra-row correlations of the Kagomé lattice model depend only on Kj, K3, K" so do
the elements of the maximal eigenvector of the transfer matrix, provided, the lattice is infinitely
large.

More strongly, impose cylindrical boundary conditions on the lattice, linking the right side to
the left, and consider a finite Kagomé lattice model where K,, K3, K,, K; can vary from row to
row, but K, K3, K" are constant and the star-triangle relations (8.1) are satisfied for all up-triangles.
Then the model is still Z-invariant, and one can establish that interchanging two horizontal
lines (together with their associated values of K, Ki, K,, K3) leaves Z unchanged. It also leaves
unchanged all correlations not involving the spins inbetween the two lines.

This implies that the transfer matrices associated with the two lines commute. In particular,
they commute when Kj becomes infinite and the model becomes a square lattice model, as
explained in the text following equation (8.3).

Establishing this commutation property was the first step in the original solution of the square-
lattice eight-vertex model (Sutherland 1970; Baxter 1972).

Disordered ferromagnetic phase

A particularly important case of the disordered phase, for any lattice %, is when at each site the
inequality (6.14) is not valid, but (6.25) is. In terms of the vertex weights (3.5) this is the domain

d3+bj+d7 > Cj > aj+b7—d7, Cj > |a]—177| +d7 (9.3)

i.e. wy, ..., wyin (7.1) are ordered so that w, > wg > wy, > |w,|.
28-2
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If the interaction coefficients are all positive, then this is the only disordered case that can
occur. From (7.13), (7.25) and (7.26), in this case

—1<4<0, k*>1, (9.4)

where 4, k are defined by (4.8) and (6.4).

Interchanging w, and wjy is equivalent to making the duality transformation (3.7). Thus if we
first make this transformation and then re-define &, «;, 8;, A, #”', " by (6.4), and (6.8) or (6.17),
then the relations (7.23) will still be valid, and the free energy function will be given by (7.9),
with ¢ =¢* =% (a+b+c+4d).

Letk*, af, p¥, A"*', A"* be the new elliptic parameters defined by this procedure. The duality
transformation (3.7) inverts £, while leaving k% sinh 2K”, k¥ sinh 2K}, k% sinh 2K; unchanged.
From (6.4) and (6.8) it follows that

k* = {4%cosh?2K" —sinh?2K"}%, (9.5)
sinh 2K” = —i/sn (iA*, k*),
sinh 2K = i/sn (iaf, k*), (9.6)

sinh 2K; = i/sn (ifF, k*),

where 0 < k* < 1 and A*, af, B are all real, lying in the interval (0, 254°*').
By noting that £* = £k~ and sn (4, 47') = ksn (A, k) (Gradshteyn & Ryzhik 1965, §8.152),
and comparing (9.6) with (6.8), it follows that

¥ =X, of =kay, BF =k (9.7)

where A, o;, §; are defined by (6.17). Thus the elliptic parameters in the ferromagnetic disordered
phase are proportional to the analytic continuation of those in the ordered phase. The Z-in-
variance conditions (i), (ii) and (iii) are therefore unaltered. In particular, at each site j of #

we must have o+ B = A (9.8)

Ising model case: K" = 0

Unfortunately the correlation functions g,, have not yet been evaluated for general values of
K" (apart from g,, which can in principle be obtained by differentiating the free energy).

They can be obtained when K” = 0, since the model then factors into two independent Ising
models. For even m the functions g,, can be obtained by generalizing the Pfaffian method of
Montroll, Potts & Ward (1963). In particular, in the high-temperature disordered phase

4n 2 p2lcosh[(n—3) n(af —of) [ *]

galks o, ) = pps B (T 1) (9.9)

where p = exp (—nA* A *), (9.10)
k*, "%, A" *', are the elliptic parameters defined by (9.5) and (4.8), i.e. (using K" = 0)

k* = sinh 2K sinh 2K, (9.11)

and af, of are the elliptic line parameters defined by (6.20) (with an asterisk on each «). For
m = 2 there are two lines between spins 07 and o, and |af — «f| is the elliptic parameter of the
angle between these lines that includes neither face / nor face .
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When K” = 0wesee from (9.6) that A* = #*’, so the dependence of g,, on A can be suppressed,
and o, f must lie in the interval (0, 2 *’).

For the rest of this section we consider elliptic functions of modulus £*. We omit the asterisks on
k k', A, A, ;. The formula (9.9) can be written as

0 (K\ O ity — i)
= (Z) Hiio, —ia,) (9.12)
__kiexo) f&f O oty —icy) Oy (25— oy — icry)
N 2 J_y h(s—iay) h(s —icty)

Ga(k; oy, 09) = —

ds, (9.13)

where H, 0, H,, 0, are the Jacobi theta functions (Gradshteyn & Ryzhik 1965, §§ 8.191 and

8.192), and
h(u) = H(u) O(u). (9.14)

For general even m, the integral form (9.13) can be generalized to

M Oio;—ix) i , h2(s;—5)

1 k%‘@"'(O)]m’zf” f1<j<z<m 1<j<i<
ks, o a,) = [—
AL As; =12,

r=1j=1
XY[2(sy+on +8p) =iy — .. —ia, ] dsy ... dsy,, (9.15)
where Y(u) = 0,(w) if %modd,
= Hy(u) if Im even. (9.16)

This is a rather unwieldy formula, but it does explicitly exhibit the fact that g, is a symmetric
function of a,, ..., a,,. A useful recurrence relation is

gm(k, gy oeey Xpppgy 1, am—l +9{‘/) = gm—2(k; ST am—2)9 g2(k9 &, a""%/v) = 1. (9'17)

Note that any two-spin correlation for any Z-invariant lattice Ising model (e.g. the triangular
Ising model) must be of the form (9.15), with an appropriate choice of the parameters o, ..., &,
of the intermediate lines.
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APPENDIX A. PROOF OF QUADRILATERAL THEOREM

First consider a typical triangle ABC as in figure 5. Use the notation of equation (4.1) and define

using (4.6
g (4.6), a=ek’ p=eK = e2Ks

a = ek, P =X = e (A1)

t = e 2K",

(These a, b, ¢, a’, b’, ¢’ are not the Boltzmann weights used in the text.) Then the star-triangle
relations (4.4) are

b'¢’ = (1+tabe)/(be +ta), (A 2a)
c'a’ = (1+tabe)[(ca+1h), (A 20)
a'b’ = (1+tabe)/(ab+tc). (A 2¢)
Solving (A 2a) for a gives a=t"(beb'c'— 1) [(bc—b'c"). (A '3)
Alternatively, taking ratios of (A 24) and (A 2¢) to eliminate &', then solving for a, gives
a=1t(bc'—b'c)/(bb" —cc'). (A 4)
Eliminating a between (A 3) and (A 4) gives
A(b,b") = Ale, ¢, (A 5)
where A(b,b") = F[2(b2+b'2) — 1 —52b"2] /[ (1 + %) bb']. (A 6)

This is the equation A = Agofequation (4.7) and (4.8) of the text. Note thatif itis satisfied, then
(A 24) is a corollary of (A 2b) and (A 2¢).

Substituting the expression (A 3) for @ into the numerator on the right hand side of (A 25),
and the expression (A 4) into the denominator, gives

@' = 1(bb —cc’) (b2e2— 1) /[(bo—b'c") (b2~ ¢2)]. (A7)

To summarize so far: thea, b, ¢, @', b’, ¢’ are Boltzmann weights associated with the angles of the
triangle ABC; a, b, ¢ are associated with the interior angles, while a’, ', ¢’ are associated with the
complementary exterior angles. If the star-triangle relations (A 2) are satisfied, and b, &', ¢, ¢/, ¢
are known, then a can be obtained from either (A 3) or (A 4), and a’ from (A 7). The b, o', ¢,¢', ¢
must satisfy (A 6).

Now consider the quadrilateral ABCDEF shown in figure 5. Let a, b, ¢, a’, 0', ¢', d, ¢, f, u, v, w
be the weights associated with the indicated angles, e.g. w = exp (2Kypg).
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Suppose the star-triangle relations are satisfied for the triangles AEF, BFD, CDE. Then from
(4.6), K}, ..., Ky all have the same value K”, so ¢ is a constant weight. For the triangle AEF the
relations (A 3), (A 4), (A 7) give

& =t (efow—1) /(ew—fo), (A'S)
a’ = t(ef—ow)/(ev—fw), ‘ (A9)
a =t (ev — fw) (w2 —1) /[ (ew — fv) (e2—w?)]. (A 10)
For the triangle BFD they give

b = t~Y(dfuw — 1) [ (dw — fu), (A 11)
b = t(df —uw) /(du— fw), (A 12)
b = 7 du— fw) (d*w?— 1) /[ (dw—fu) (d®— w?)]. (A 13)

For CDE, the relation (A 4) gives
¢ = t(de—uv)/(ev—du). (A 14)

We want to prove that the Star-triangle relations are necessarily satisfied for the triangle ABC.
In particular, we want to establish the relation (A 2¢), i.e.
ic(ab—a'b") = aba'd’ — 1. (A 15)
To do this, substitute the expressions (A 8), (A 10), (A 11), (A 13), (A 14) fora’, a, b, &', ¢ into
the left hand side, and the expressions (A 9), (A 10), (A 12), (A 13) for @', @, b, b’ into the right
hand side. Multiplying out all denominator factors, (A 15) will be satisfied if J = 0, where J is
the expression J = (do— ) [(ev—fio) (dfiw— 1) (4= w?) (e — 1)
— (du—fis) (efow— 1) (2~ u?) (dPw?— 1)]
— (ev — du) [ (¢f —vw) (df — uw) (d*w?— 1) (*w?—1)
= (ew—v) (dw — fu) (d*— w?) (¢ —w?)]. (A 16)
Note that J does not explicitly depend on ¢, which is a slight simplification. The choice of
whether to use (A 8) or (A 9), (A 11) or (A 12) has been made to ensure this.

The expression J is a polynomial in w of degree six. Setting w? = + 1, we find that J vanishes,
so it contains a factor w*— 1. Now it is not too difficult to verify that

J=de(wt—1) L, (A 17)
where L = du[(e2+0?) (1 +/f202) — (f2+w?) (1 +¢%?)]
+ev[(f2+w?) (14 d%u?) — (d2+u?) (1 +f2w?)]
+fw[(d2+u?) (1+e%2) — (e2+02) (1+d%?)]. (A 18)

The d, ¢, f, u, v, w are not independent, since from the corollary (A 5) of the star-triangle rela-
tions, applied to the triangles AEF, BFD, CDE, they must satisfy:

A(d,u) = A(e,v) = A(fyw). (A 19)
Using the form (A 6) of the function 4(b, ), the equations (A 19) are linear in #2. Eliminating ¢
gives the equation L=0 (A 20)
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where L is defined by (A 18). From (A 17) it follows that J does vanish, and hence the relation
(A 2¢) is satisfied for the triangle ABG in figure 4.

Now interchange d with «, e with w, and fwith » in the above working. Th1s leaves (A 19) and
(A 20) still satisfied, and from the star-triangle relations for AEF, BFD, CDE, the right hand sides
of equations (A 8)—(A 14) become d’, @', @, ¢, ¢, ¢’, b, respectively. Thus we have also established
that

th(ac—a'c") = aca’c’—1, (A 21)
which is the relation (A 2b).

Finally, note from (4.9) that the star-triangle relations for AEF, BFD, CDE imply that 4 has
the same value at all points of the quadrilateral, and in particular that 45 = 4. From the
observation made after equation (A 6), it follows that the relation (A 24) must also be satisfied.

Thus the star-triangle relations for the triangles AEF, BFD, CDE imply that the star-triangle
relations are also satisfied for the triangle ABC, which is the required theorem.
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